

Series 7LHP

Piezoresistive OEM high-pressure transducers with a wide range of applications

Features

- · High long-term stability
- Robust housing made from stainless steel, Inconel or titanium
- · Front-flush diaphragm welded with no gaps
- High operating temperature up to 180 °C
- · Optimised thermal behaviour

- Insulated piezoresistive pressure sensor encapsulated in an oil-filled metal housing
- · Ideal for mounting with O-ring and support ring
- Typical output signal range of 160 mV/mA

Typical applications

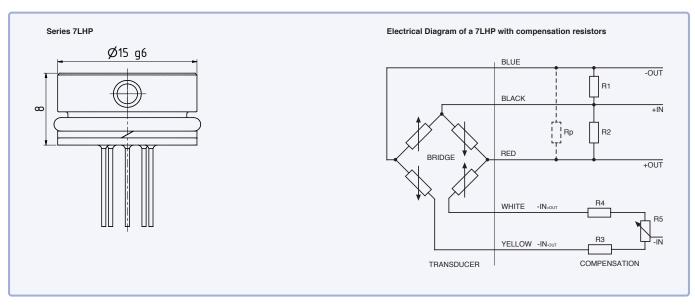
- · Oil and gas
- · Oceanology
- Geology
- Energy sector
- Hydraulics

Accuracy

 $\pm 0,25$ %FS

Long-term stability

± 0,25 %FS/year


Pressure ranges

0...100 bar to 0...2000 bar

0

CE

KELLER AG für Druckmesstechnik

CH-8404 Winterthur ♣ +41 52 235 25 25 ☑ info@keller-druck.com KELLER Ges. für Druckmesstechnik mbH

DE-79798 Jestetten +49 7745 9214 0

Edition 06/2021

Subject to alterations
Companies approved to ISO 9001

www.keller-druck.com

Series 7LHP – specifications

Standard pressure ranges

Absolute pressure	Absolute pressure	Proof pressure		Sensitivity	
PAA	PA		min.	typ.	max.
0100	0100	250	1,20	1,60	2,0
0160	0160	400	0,75	1,00	1,25
0250	0250	625	0,48	0,64	0,80
0400	0400	1000	0,30	0,40	0,50
0600	0600	1500	0,20	0,267	0,333
01000	01000	2200	0,12	0,16	0,20
01600	01600	2200	0,075	0,10	0,125
02000	02000	2200	0,075	0,10	0,125
bar abs.	bar abs.	bar	mV/(mA × bar)		
Reference pressure at 0 bar abs. (vacuum)	Reference pressure at 1 bar abs.	based on reference pressure	The standard pressure ranges are available from the warehouse. Calibrations to any intermediate pressure ranges can also be made.		

Performance

Accuracy @ RT (2025 °C)	± 0,25 %FS typ.	Non-linearity (best fitted straight line BFSL), pressure hysteresis,
Accuracy @ FT (2025 C)	± 0,50 %FS max.	non-repeatability
Offset @ RT (2025 °C)	< ± 25 mV/mA	Uncompensated, the sensitivity value must be added for PA
Oliset @ NT (2025 C)	< ± 2 mV/mA	Compensated with R3 or R4
Compensated temperature range	-1080 °C	Other temperature ranges between -55180 °C are possible as an option
Long-term stability	≤ ± 0,25 %FS	Per year under reference conditions
Degree of dependency on location	≤2 mbar	Calibrated in vertical installation position with metal diaphragm facing downwards
	≤ ± 0,025 %FS/K	Zero (TCzero) pre-compensated with R1 or R2
Temperature coefficient (TC)	≤±0,06 %/K	Sensitivity (TCsens)
	18003000 ppm/K	Total bridge resistance (TCres)

Electrical data

Half-bridge configuration

Constant current supply	1 mA nominal 3 mA maximum	
Bridge resistance @ RT (2025 °C)	3,5 kΩ ± 20 %	
Electrical connection	Gold-plated pins ø 0,45 mm L = 9 mm ± 0,5 mm	Optional: Silicone wires AWG28, L = 70 mm, other lengths on request
Insulation	> 100 MΩ @ 500 VDC	

KELLER Ges. für Druckmesstechnik mbH

Series 7LHP – specifications

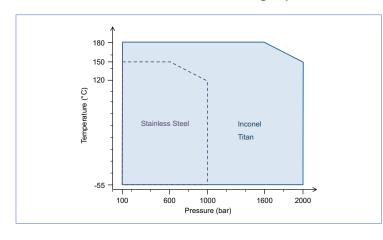
Mechanical data

Materials in contact with media

	Stainless steel AISI 316L	Series 7LHP	
Housing and diaphragm	Inconel 718	Series 7LHPI	
	Titanium	Series 7LHPTi	
O-ring	FKM (75 Shore) ø 12 mm × 1.5 mm -20200 °C	Optional: others on request	
	> 100600 bar: PTFE		
Support ring	> 6001600 bar: PEEK	Installation via O-ring/support ring is not suitable for pressures >1600 bar. We recommend welding the pressure transducer to a housing.	
	ø 1,8 mm / ø 15 mm × 0,75 mm		

Other materials

Dil filling sensor Silicone oil	Optional: others on request
---------------------------------	-----------------------------

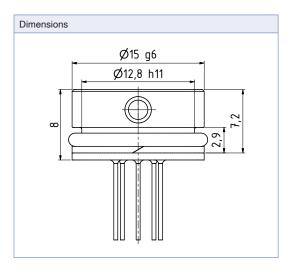

Further details

Diameter × height	ø 15 mm × 8 mm	See dimensions and options
	approx. 8,6 g	Series 7LHP
Weight	approx. 9,2 g	Series 7LHPI
	approx. 5,2 g	Series 7LHPTi

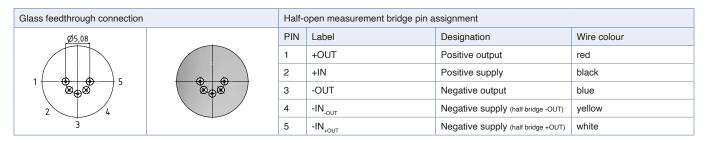
Ambient conditions

Media temperature range	-40150 °C	Onting 1, 55, 400,00	
Ambient temperature range	-40150 °C	Optional: -55180 °C	lains not narmitted
Storage temperature range	-2070 °C		lcing not permitted
Vibration endurance	10 g, 102000 Hz, ± 10 mm	IEC 60068-2-6	
Shock endurance	< 50 g, 6 ms	IEC 60068-2-27	
Natural frequency (resonance)	> 30 kHz		
Pressure endurance @ RT (2025 °C)	> 10 million pressure cycles	0 100 % FC	
Dead volume change @ RT (2025 °C)	< 2 mm ³	0100 %FS	

Recommended material selection according to pressure and temperature


KELLER 7LHP series high pressure transducers are available with various material options. Stainless steel, Inconel 718 or titanium can be selected (see "Mechanical data") in line with requirements.

The diagram opposite shows the material options available depending on pressure and temperature. All the materials mentioned are compatible with pressure ranges up to 1000 bar. Only Inconel or titanium is offered for pressures above 1000 bar and above 150 °C due to their mechanical strength.



Series 7LHP - dimensions and options

Electrical connection

Overview of customer-specific options

- · Custom pressure ranges
- Custom temperature ranges between -55...180 °C
- · Custom mathematical modeling
- · Electrical connection using silicone wires
- O-rings made of other materials
- · Other oil filling types for pressure transducers: e.g. special oils for oxygen applications
- · Modifications to customer-specific applications

Examples of related products

- Series 6LHP: high-pressure transducer with ø 13 mm
- Series 6LHPH: high-pressure transducer from Hastelloy C-276
- Series 7LHPX: high-pressure transducer 7LHP with digital compensation electronics
- Series 10LHP: high-pressure transducer with ø 19 mm

Series 7LHP – Analysis and characteristic lines

Standard analysis

The 7LHP are intended for o-ring mounting and depend on the stress isolation provided by o-rings for performance within stated specifications. This installation enables the values measured during factory testing to remain valid. If the transducers are not de-energised when they are installed, the mechanical forces may change the measured values and the stability of the pressure transducers.

PA-10L/10 b	oar/10-1005-118	3 ⁽¹⁾ Sn I1075	47 ⁽²⁾	 Type (PA-10L) and measuring range (10 bar) of pressure sensor Serial number of pressure sensor Actual test temperatures
[°C] -9.5 0.1 25.0 50.2 79.9 COMP R1 RB ZERO SENS LIN (12) [bar] 0.000 2.500 5.000 7.500 10.000 Long Term S Lot 72114-2 Test 500 Vol Supply 1.00	[mV] 18.5 18.7 19.1 19.8 20.8 510 kOhm (6) 3482 Ohm (9) -0.8 mV (10) 16.41 mV/bai (13) [mV] 0.0 41.1 82.1 123.1 164.1 Stability Ok (16) (17) tt Ok (18) 10 mA (19)	P_atm	(*) dZero [mV] 0.2 0.2 0.0 -0.1 -0.2 56.0 Ohm (*) 964 bar (*) Lbfsl [%Fs] -0.01 0.00 -0.01 -0.01 -0.01 3.A03DIK (*20)	 Uncompensated zero offset values Zero offset values with compensation resistor R1 (+) or R2 (-) connected Zero offset with calculated compensation resistors connected Temperature zero error with compensation resistors connected Calculated compensation resistor values R1 or R2 (TCzero) and R3 or R4 (offset) RB: Bridge resistance at room temperature Calculated offset with compensation resistors R1 or R2 and R3 or R4 connected Sensitivity of pressure sensor at room temperature Pressure test points Signal at pressure test points Nonlinearity (best straight line through zero) Nonlinearity (best straight line) Results of long-term stability test Sensor traceability information Insulation test Excitation (constant current) Date of test Test equipment

Notes

- The indicated specifications apply only for a constant current supply of 1 mA. The sensor should not be supplied with more than 3 mA.
 The output voltage is proportional to the current supply (excitation). If the supply deviates from the calibration, signal shifts may occur.
- · The compensation resistors described in this data sheet are not part of the pressure transducer and are not included in the scope of delivery.
- Compensation resistors must have a temperature coefficient of < 50 ppm/°C in extreme temperatures. The sensor and the resistors can be exposed to different temperatures.
- Fine adjustment of zero with R5 potentiometer (20 Ω) is possible. In addition, a maximum TCsens can be guaranteed on request or the value for the compensation resistor (Rp) can be indicated. See «Electrical Diagram of a 7LHP with Compensation» on page 1.

Characteristic lines

Examples of typical characteristic lines of the temperature coefficients, normalised at 25 °C, uncompensated and compensated

CH-8404 Winterthur

♣ +41 52 235 25 25

info@keller-druck.com

Series 7LHP – Analysis and characteristic lines

Mathematical compensation model

As an option, the 7LHP series KELLER pressure transducers can be ordered together with a mathematical compensation model.

The compensation model is a mathematical formula that helps to calculate the compensated pressure value of the pressure transducer. Both the pressure signal and the temperature signal of the pressure transducer are incorporated into the calculation. Polynomial functions are used as the basis for this mathematical model.

The pressure transducers are characterised in the factory in order to produce the compensation model. This involves measuring pressure and temperature signals at various pressure and temperature levels. Comparing the measured values with the known pressure and temperature values enables the calculation of the compensation coefficients of the pressure transducer. These compensation coefficients are made available to the customer along with the respective pressure

+49 7745 9214 0